Review of Kneser’s work on algebraic groups and the Hasse principle and subsequent developments

نویسنده

  • R. Parimala
چکیده

Let k be a number field. Let Ω denote the set of places of k and for v ∈ Ω, let kv denote the completion of k at v. A classical theorem of Hasse-Minkowski states that a quadratic form q over k represents zero non-trivially provided it represents zero non-trivially over kv for all v ∈ Ω; in particular, two quadratic forms over k are isomorphic if they are isomorphic over kv for all v ∈ Ω. Another classical theorem of Hasse-Brauer-Noether states that two central simple algebras over k are isomorphic if they are isomorphic over kv for all v ∈ Ω a consequence of the injectivity of the map Br(k) → ⊕ v∈Ω Br(kv), Br(k) denoting the Brauer group of k. These results can be formulated as a Hasse principle for Galois cohomology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Cohomological Obstruction to the Hasse Principle for Homogeneous Spaces

For a homogeneous space with connected or abelian stabilizer of a connected linear algebraic group defined over a number field, a cohomological obstruction to the Hasse principle is defined in terms of Galois hypercohomology with coefficients in a complex of two abelian algebraic groups. This obstruction is proved to be the only obstruction to the Hasse principle. It is proved that up to sign t...

متن کامل

A general construction of Reed-Solomon codes based on generalized discrete Fourier transform

In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes  enjoy nice algebraic properties just as the classic one.

متن کامل

Lattice methods for algebraic modular forms on classical groups

We use Kneser’s neighbor method and isometry testing for lattices due to Plesken and Souveigner to compute systems of Hecke eigenvalues associated to definite forms of classical reductive algebraic groups.

متن کامل

Failure of the Hasse Principle for Enriques Surfaces

We construct an Enriques surface over Q with empty étale-Brauer set (and hence no rational points) for which there is no algebraic Brauer-Manin obstruction to the Hasse principle. In addition, if there is a transcendental obstruction on our Enriques surface, then we obtain a K3 surface that has a transcendental obstruction to the Hasse principle.

متن کامل

Curves over Global Fields Violating the Hasse Principle

We exhibit for each global field k an algebraic curve over k which violates the Hasse Principle. We can find such examples among Atkin-Lehner twists of certain elliptic modular curves and Drinfeld modular curves. Our main tool is a refinement of the “Twist Anti-Hasse Principle” (TAHP). We then use TAHP to construct further Hasse Principle violations, e.g. among curves over any number field of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005